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1. GePlan

These lectures are meant to be very-

elementary
introductions totopological
-

field theory and differential cohomology.
Lectures 112 concern TFT

Lectures 3+4 concern differential cohomology
2.StoreIn TFtiaMotivation

One centralgoal of physics is to
describe/predict time evolution of
nantur systems. This isabstractedq
in QMFTto describing amplitudes.
In a spacetime dimensions

we might have:
initial spatial manifold Ni,
final spatial manifoldNit
and them thereis a spacetimethat



interpolates between them
-
I8I Mn-N

n - 1

In
quantum Reory HilbertspaceNiceres Ho - from which we

describeinitial
states

Hilbert spaceNetin I :from which we
describe final states

The interpolatinghistory gives a linear

map 7:No->H,

Topological Field Theory (TFT)
is meant to capture thisvery basic
idea in a way whichexpresses



localitybut eliminates almostall
The complications of typical quantum
systems.
But in TFT we postulate that only

Re dfmaphism class of N.N,'Mmatters.

But the formulation ofTFTmotivates a framework:

The functorial formulation offield theory
for describing general field theories.
As such itisa topicof currentresearch,
While IThas a well-developed

with rigorousmathematical,and beingfurtherdevelopa

So, we are going to axiomatize
The answers we get from, say, apath integral.
Topological ->no metric dependence,

in particular no choice of signature.
Butwe should think ofit as axiomatizing
Eudidean/Wick - rotatedQFT.



To a closed
Nn-1

&Nn-, =0
->F(N):A rector

space,
Inthe

space of
states"

Isomaphism class onlydepends on differ
class ofN-1."Topological invariant

"

④ F(Na, 1Ni!) =F(N_,) QF(N)
↳ In QM. H. He for noninteracting
systems then combined system

has

space of states I, OH.
marks:

of "soitbeginning ofthe implementation
2. NoteWell!It fallows from * M.t F(4-1)=K
3. Compare withtraditional topological
invariants:

H=(M1M')=H, (M)* H,MM's
i, (MHM') Not even defined:need

tochoose a basepoint.



Now consider an a-manifoldwith

boundary No
n- 1

-

O -
-8

armi?/
n- 1

-?,
We want to think of this as a

Spacetime connecting in- and out- States

We need to choose which spatial
slices are "in" and which are "out!

e.g. red arrows above indicate
in and out.

N.B.! We did notassume our
manifolds are oriented! We could (andwill)
Consider an analogous storyfor oriented
manifolds, butthatisnotnecessaryhere.



So, in the above example, ourquantum
amplitudes will give a linear maps

F (M.): I (Nitr_?)-(N)
The

nextaspect of locality are wishto axiomatize is gluing. In a QFT
The Eyuman pathintegral over field

A

onfigurations on Mn defines apropagator
"

on kernel map on
initial and finalfield

configurations:

x(4,4,) =DE
N

Then the amplitude

No

F/M.3 would
be expressed as

[FM-sIi)(4) =(x (4,4:) Eil4i)dd:



Butwe expect
thatif we out Mu

along some intermediate (n-1)-fold

)
Nint N

di If

k(4,4:) =(din),b.)d
M.

This motivates thegluing axiom:
F(Mn) =F (M) oF(M)

=F(M,M
gering along Nint

This is the second aspectof

locality we wish toinclude:2



Now, we mightnotyetbe
able togive rigorousmathematical
definitions tothemost interesting

path integrals
for quantum field

Reory -butwe can certainly
axiomatize certainproperties
we would definitelywantthese
pathintegrals to satisfy.
The abovegluing axiom isan
example ofsuch a property.
To put thison a nice and

precise mathematical foundation
we introduce the idea of

bardism!



3. Bardisms
nee

For much more about barismtheory (witha
view to applications in TFT, See:Dan Freed,
"Bordism:Old andNew"

To save spacewe
will refer

to a compact
manifold

withoutboundary as a
"closed manifold."



Def: LetN, Niti be closed
-

manifolds. A bordism
-

ito Ni- is the following
collection of data

a.) Compact n-manifold withboundary Mu
6.) Decomposition of boundary componentsofininto "in" and "out"&Mn=Mn). 1(0M)
C.) Differ's of collar neighborhoods
bin: Ni, x[0,2)- Mr

Ni, 303 --LOMn)"
fort:NY (1-9, 1 - Mm

N!, 913-(OM)
out



· A differmaphism ofbardisms:

(Mn, Gin, Oort)
->No ↓4 N

n - 1 n - 1

-

(M. bin, out)
is a differ 4:MrtM
so that

Din Ma

Nox 10,9)it 3 commute-N' (1a,
OutMi



· One of the reasons itis useful

to incorporate the data of

tin, fortinthe definition of

a bardism isthatitallows

us toque burdisms

(Mn, tin, fort):No -N'

(Mn, tin, fort):N'-O
intoa single badism Ni-N?
If we justconsidered

manifolds

with boundary we could notaccount
for the possible "twists"ingluing the
two bardisms together.



Example:Consider
thefollowing

O-manifolds NO=N'=disjointunion
oftwo points

bardisms*- ⑨

?

⑫tion:Howmangiffoe & a

-> ->
8
-

.

.->-0-B

But also

->

⑧
-8

-I

00
-> Oo

etc. is by many·--

because we can take disjunt
union withbordisms 1-I, i.e.
closed compact manifolds



In TFT we associate to a bordism

a linear map F([Mn, Ain, fout3)
from F(N?,) -> F(N!,],and
postolate thatitonly depends on
the "differ equivalence class"of

the

borelism:

Calling(N) is a representation
the

Ate:The representation factors

Through toa representation ofthe

mapping class group it.Diff(n-1)).

Samarkon math's" Let G be a

topological group.Then the connected
componentof the identity, Go, is a normal

subgroup (exercise!) and

1- 6-6-io(G) + 1



So Ho(G) =G/Go is a group.
For a general topological space of

(E) is nota group.
Agood example of a nontrivial toPitfN))

is given bytaking
N =TV=(**) /2*R.

The linear tmun. on RORR

(vi) -(?) (I' I (=G12
is compatible with*R group action and

descends toan a transformation on the torus.

The projection tothe quotientgroup toNiff(t))
isnontrivial because itactsnontrivially
on Ht,2). Note this example is

somewhatatypical since we have presented
ne

a GL12,2) rop of Diff (T2) rather

Than as amintgroup. In general
we could notdo that.



② BiGroups

Using the data of Oin, Sout
we can glue together bodisms

NoN
-
(M,0,0)M,0,0)

to
prove thatbordism is an

equivalence relation on (n-1) - manifolds.
Under disjointunion me form an
Abelian

group which is 2-forsion
because ar N

E
O



shows (N)H/NI=C0...]

Note that 2
=30G

is the trivial
group,

because

circle bounds a disk.
every
But(RP]-R2 is nontrivial:

if I&M =NN
2

Then

gering, M3 upMs= closed

3-fuld with Euler Characteristic

ax(M3) - 1, butthis mostvanish.
In fact, by the classification
the for surfaces I = 2122.

2

↑



Bordism groups play an
importantrole

in the application
ofMATto the mathematical

theory oftopological phases
of

matter.



Returning to TAT, the rules are:
Opt (n-17-folds

F:9 - &N=4 3 -Vectorspaces
CoverK, in these
lectures)

F(NHN' F(NQF(N'
C =>F(4 - 1) =D)

F: IBondism S
linear trun

M:NEN'
+ F(M) eHomsNY, Fw

such that

F(M!M_) =F(M!) ·F(Mn)
crote:Fordisjoint bardisms F(Mn HMn) =f(Mn)@FY)
Claries,
1.) Since Hom (D,C) F & canonically:

/Every lin,tm.D-Ais of the

form TCE) =ZoE so Tm z=T(II)
=>For Mn aptwithout bary:Mr Pr -

F(Mn) EC "partition function"



2.) Consider a bordism

M.:4.-1 -> Na-s

Then F(M) =Hom(&, F(N-,3)
1tVector

-> Vector inthe⑳ outgoing
State space.

Remark:Thewestermightene
CMa (pure) State is represented

bya rackI projectopenontheen
So the term

p=4) "Statespace"is14 1/2
a

inaccurate.



3.) Consider any cylinder Mr Nn-x [011]
withDin=fort= identity.

⑧

F(Mn(oF(M) =(
pal!!C C

->FM.) G Hom (F(N...),F(N) (
isa projector:All amplitudes are
Zero on Ker (F(M.))-) Assume WLOGF):Idenity.



4.) "Dualizability" NEry

FE) versa
Diff action ->Symmetric bilinear form

VaV- K
↓

F)():D= vor
Now consider the "S-diagram"

-

->

-
eweor ⑳ N



This gives a map (recall V
=F(N)):

v-va(ver)=/ov) or
Ide

body
-

The compositionmustbe the identity.
This implies thatb is nondegenerate
and=F(N) is retensional.-

Pf:Choose a basis:b(V,Vj) =bij
(1)

=

5view;
We learn RatBisbjn =0"n=>

bigis invertible. If I were is dim't

we could define a H.S. structure declaring

SVis tobe ON. We would want

bij voy and is viewstobe
namelizable

This is notpossible.



5. It follows
that

= (Nx 51) =dime (F(N))

=(G) =bbsi=d
Ate:In many

discussions ofQFT

The overall normalization of
thepath

Integral getsno respect. This is notthe

case in TFT where the overall normalization

has a definite meaning
and for some

manifolds iseven quantized. One of
The

many applications
is to produce

topological invariants:

F(M) = topological invariant often
an eerative int

Here the normalization iscrucial!
We are counting (curves, instantors, monopoles, or are3



4. Example: R =1

n =1·J! connected O-dimensional mild
Seesfallowfrom

folthe humble pt.So all F(pt) =a --

Stric
vector space. Then we have nondey, from

F(8):Vov-c
That's all! We now have the

basic datato computeany
amplitude we like, such as?

Nontrivialfact:
No matter how the
cut along intermediate· The sameresult.channels willget

->

&

⑧

VeH- VOY



5. Example 2: Oriented n =2 theory
R=2. To avoid complications

withclassification of unoriented surfaces

we work withand bondisms.

I Only I connected.1-manifalel
wortbary:F(8) =T

Two algebraic structures:

Canonical bodism 8'-4,
the disk
- E:V- K

Multiplication:Pair of paints

o
> O m.VV-V
O

Ausefulway to look at it:
Disks within disks:



,",0-
m:VOV-> V is a

Corally.I - commutative and associative
-

multiplication

Gay2:For any n-dimilTFT-

F(Sn-1) is a commutative algebra.
+ associative

In case n =2 the bilinear form

b(x,v) =0(Y,oV)
is nondegenerate.
Dif:An associative and commutative algebra

with 8:V- &sit. b(Y,Ve) =O(Y,Ve) is

nondegenerate isa trains alba



Seetheorem andMorsetheene
can compute any amplitude

EO
By cutting intoelementary pieces:

E
The question arises whether two&

differentcuttings into elementary pieces
give the same amplitude,



↳Themem: Well-defined amplitudes
impose no further algebraic relations
on (V, m, 0)

Referently:To give an n =2
dime

oriented IT is to specifya Trobenius

algebra:
For a long time this was a falltheorem,
attributed variously toD. Friedan, R.Dijkgreat,
G. Segal, --

Acarefulproof is in the appendixofthe
expository paper ofG.M. +6. Segal.
The basic idea is to Use a Morse

-

function togive a decomposition of
M into level sets. Considera44

function:

f:M -> R

"Spatial slices"f(t) =N-CM



f-(t) will be a nice smoothmfld

unless t is a critical value.

p:apoint: df() =0

mecriticalpoint:ys),wondeg.
A Mouse fraction on a bondism Mm:N Nite

is excellent if itis constant on

-

NON and the critical pointscan be

ordered so the critical values one

c =f(N) < c,c .. - <crc(FfN)

The spatial slices fits are all

differmaphic for Ci <t < Crit
But there is topology change as
we cross a critical point:



xl

tenker.f- its
t < tar

Ex: n=2 I,- I value
Note well, the neighborhood of
the critical point looks like this

[I

#
N.B. Thisis a "manifoldwithcorners."



Now we can change time-slicings-

by considently apath of smoothfunctions
to which are excellent Morse

functions for generics.

②theory: In the (Whitney) topology
of2"MM-R) the setof excellent
Morse functions is open and

dense but

disconnected.
-

·

Define a function f:Mutt tobe

"good"if it is Mouse everywhere
except for one or

two critical points,and

· One critical pointlocally of the form by+x3
· Tw critical points have the same value

Theorem: The set of excellentandgood
-

functions is a stedet. The good
but notexcellent functions form a real

codimension one subset.



So a path of excellent -good
factions

to connectingtwo time slicings
will cross a finite setofcritical

values sy---Sx where the functions
are good butnotexcellent

Ein =1,f((x) =b - sx

***
830



It now fallows from Cerf-Mouse theory
thatany two changes oftime slicings
are related by some elementary changes.
Invariance under those elementary changes
is guaranteed by the algebraic axious
ofa commutativeassociativeFrobenius

algebra. This is how the sewing theorem
is proven.



↳simplicity Choose an ordered basis

SViSfort. Consider the operator
L: defined by left-multiplication by

via

It has matrixelements:

↳(4) =ViVg =Na VE

Commutativity ->(Li, 1j7 =0

If the L: are all diagonalizablen
en

we say
the algebra is simple

In thiscase there is a basis of

idempotents [2, 3:

EiEj = dij &i

and the only invariants of the

Trubenius algebra are the dimension

and the values of the trace F(Ei)= Di



Remarks.If we view this model
-

as a baby model of string theory
with zero-dimensional target space
Ten D =1 pt pt;E;

and Ei is the value of the

string coupling/dilator.
② We can also use the n=1,2 theories

as topological models of quantum gravity.
In this contextthey are useful
playgrounds for exploring the role

of

Apology change and "baby
universes"in EQG.

An importantpaper
on this is

Marolf +Maxfield 2002.08950

with clarifications,generalizations, and furtherextensions
in Banerjee + Moore, 2201.00903
which in turn inspired a general framework for

EQG laid outby D. Friedan: 2306.????



Exercise:Suppose V is a semisimple FA
--

(a) show that the state produced by
a handle is

F(0) =z t'e:

(b) Suppose Zig is a connected genus

I surface withoutboundary. Show that

F(5g) =2 0g

(c)Therefore the rac- rac, 4-tobordism
given by summingoverconnected topologies
is

I

Show Fornated-Iget
topies the full rac-svac amplitudes is

E
racevaa= exi

⑧

2



Exercise show that F(CO)-

defines the unitelement for the

algebra multiplication in- by illustrating
a suitable change of Morse function

ercise:Illustratethe change of
Morse function thatimplies themultiplicat
ont is associative.

Exercise:
-

Considera compactorientable manifold
X with all odd Betti numbers box) =0.

Show that the cohomology
group H*(X, C) is a commutative
associative Erobenius algebra,butthat
itis notsemisimple.Compute
all the amplitudes for X= RP!



6. Open-Closed Oriented n =2

AND EMERGENCE OFCATEGORIES

If we thinkof 2d n =2 TFTas

a model of topological string theory
withzero-dimensional targetitisnatural
to ask aboutthe extension to open

strings

Replace spatial OuxI
Now we need boundary conditions/
larbels on the end ofautostring,
Let'scall them

a, b, c, ... eBo

a vector
So

F(:=Gb spaceof
openstring states

~/bary conditions ad b.



Now considerthe bordism:

C

sit.........
b. ↑

We conclude

all--------a that:
1. O is an associative, but notac

necessarily commutative algebra-
2. Das is a bule for Qa*Obb

3.There is an assistive multiplication

OasxOxa- Oac given by
the above picture. d

ali---........The proof of C = d

associativity is:
bt X S
b
- ....--a
-al--



Thus the structure me getis precisely
thatof a dry

Det:Acategoryis a collection of
data (Co,C, Pa,Pic m) where
(a.) Go, C, are sets

CCo:"The setof objects" alldete
C: "The setof morphisms"

P
codomain(b.) C Co domain maps

Denote(fzC,) pi(f) =y pr(f) =x G: =[(x,y):=Homxy)

(C.) Define C=C. pypoG.
=E(f,g)(polf) =p,(g)}

The setof composable pains of maptisms
M: Ga ->C,. Denote m(g): =fog



Satisfying conditions:

K.) * x = Co 7 maphism 1((x,x)
St. fe Hom(y,x) 1xof-f

Fg-Hom(x,y) go1x =g

(B.) Consider the setof 3 composable mahls.
2, =[(f,g,h)(posf) =p,(g)Pos-piChil

Cm,C-
C, ie. (fogJoh =fo(goh)

-

-menfaentire
7

Co- set of boundary conditions abc-
Hom(a,b) =Oab
m =multiplication



M. SoundOn Categories

In
general itis often useful to thinkW

of a category as a directed graph
Objects:Vertices of graph
Maphisms:Oriented edges ofgraph.

For us, avery important category is
The bardism category Bordan-y,n)
Objects.Smooth,closed, (n-1)-folds
Morphisms: Bardisms (up todiffer.)

Composition m: ghing of bardisms.
Exercise:Whatistheidentitymaphism?
>



Another importantcategoryfor us is

VECT:Objects =f.d. D-rectorspaces

Muphisms = D-linear transformations
between U.S.

m =composition of linearmaps
Withone more idea from category
Theory we can nicely formalize
one key aspect of TFT:

Def: Let C,D be two categories.
Afunctor :C-D is a pain
of maps ⑤:C.-D.

#1:C,-D
such thatF:Hom(xy)-Homp(EM, F(y))and fig

either [,(fog) =F,(f)04,(9) (Coumint)-

F,(fog) =F(g)0F,(f) (Contravonant)



What weresaid so far is
thatthe rule Fofanadia

-

TFTisthatitis a

functor:

F:Bordan-n -> VECT

The equation
F(fog) =F(f). FIg)

captures LOC2.
ButwhataboutLOC1?

i.e.

F(NHN') =FIN)&FN'



⑧LOC1
To incorporate 1 we need the notion

ofisomorphism of functors, some need
Three moredefinitions from category theory:
Def:Given categories C,D and two
-

F

fructors (
1

a muraltramation Cak.a..
morphism of fructors") denoted

I:F=G

is a collection of
maps byindexed

by XeCo =Obj (C) such that, for
all x, yzC, and all fo Hom,y)

F(x) -), F(y)
i
x1 ↓Ex
G(x) G(y)



Example. The Ath integral cohomology
is a contravariant fructor:

A:TOP -> ABGROUP

On objects: H2:X-H"(ix)
On morphisms:1

*

(X*Y) =
If a continuous map)

2

f*:HYY,2)-HY(,)
Then the cup productis a titan
between AOH, and Hatter

& &

H*(X,z)aH)x,2)-H*x,2)
xcupproduct

Similarly, Steenrod Squares are natural

transformations.



ise For VtObj (ECT)
define a functor : VECT-sVECT

byFv(W) =
=HomCV, w)OV

F(W,we) Hom(Y,w,)oV
·TOId

-> HomXV,We)oV
show that the evaluation map

Tw:F(W) -W

A*U - ANI

is a naturaltrun of In tothe

identityfunctor. Id:VECT-VECT.



DeAnarphism of fructors

2: F
-E is a naturaltransformatio

I such thatthere is a naturaltransformation

=F-F, withcommutative

diagrams:
E(X)

Ex ***yFx)Ex
F,(X)
-> F,(X) E(X) -> F(X)

-dx) dEX)

Ref:An equivalence of categories
C D is a pair of functors

F: C-D!,G:D- C
withisomorphisms of F.G and GoF to
The identityfructors.

Many,many,importantresultfencecate



Def:Atensor cory (a.k.a. "monoidal)category 1)

is a category witha functor

&:Cx) -> C

and an isomorphismitof the functors

⑦Ed CXC &

excxa
Y HAY c
-

Idxa (X2 Y
It is known as the associator:

Ax,y,z:(xxy) xz -Xaz)
and itmustsatisfy the pentagen
identity:



(xyax)axy
-(x,xx)0(xxx)

-
(x,a(X-ex,))xxy x,x2a(xax)
↳ X
x,x(X-xx))xxy)

Finally there is an identityobject

1,GObjIC) and natural tmns:

22:1,Q) -> Id

2R:(.) *Ic + Id

satisfying some naturalcompatibility
conditions. See EGNU for a

complete treatment.

EGNO=Etingof, Gelaki, Niteshych, Ostrik



Remark:Fusion of anyons.
A

-

mathematical descriptionof anyons
identifies them withobjects
in a Q category.The Q
is regarded as fusionofthe
anyons "and can be pictured
as

it teHom(aeb,c)

The associator is

2
d d

⑫↑ /!Et aa



Eise:Write outthe

pentagon diagram using this

notation.



monoidal monoidal
A Q - functor between ② categies
F:C-D is a functor that

preserves structure

in the sense that there one isomaphisms

F (XaY) -x*(X)*(Y)
F(tc) -> Re

4c

satthemsome I conditions....
Remark: Abringis an isomaphism

ofQ: CXC-C with

000:CXC-C where

0:(X,T) -> (T,X) is the exchange
functor. This amountsto the data

of isomorphisms:

Mxy:xay -syex



Remark In the theory ofanyons the

anyons are the objects ofa tensor catory
anch xby

is called the fusion of the

anyons. Exy
is thebraiding.

Inthesewe have Myxxy:Idxay,
iswe work withsymmetric tens categories.
In general, for anyons, My,xoxy
is nottheidentity.

Now VECT is a category, using
&productof vector spaces. The
associatoris trivial. Also, Bordan-1,n)
is a Q-category, using disjoint↑
union. They are bothsymmetrs
①. cat's



Exercise: What is the monoidal
-

unit Ic in VECT and in

Bordan-n?

Des An n-dimlTRT is a

symmetricG-functor
F:Bond ->ECT

(n-1, n>

Will now give an importantexample:
Finite group gaugethemy
Butfirst, we need some more

math...



8.Seeround On G-Bundles

· For a group G aG ar

alhomogeneous space isa set T
witha free transitive Gaction on T.
· For Ga topological group and X a

topological space a priG-bundle
Econt-

Xis a map of topological
spaces it:P-> X such that:

1.) P admits a continuous and free

right G-action sit it (p.g) =(P)
and the fibers it) are G-tonsons

2.) 4:P-X is locally trivial:Vx,
duxJu xGx) -> ux xG
- X

ux

duxis G-equinariant.



key example for us:

Choose goG and letact

on RXG by n: (x,y) ->(x+n,gig)
P. =(Rx6)/2* R12 =82

[(x,g)] -> [X]

Intritively

mult.byg.toglue by

0 I

Denote this G-bundle/81 by Pg.

Def:A bundle map, or morphism
ofprincipal G bundles over X is

a fiberpreserving G-equivaantmap
P, IsPe
x,xx**2



>One can show: ofprincipal G-bundles

F bundle Uhas an inverse
-very map

brudk
map

so itdefines an isomorph.

Eise: Show that the bundle

map RXG Am, MxG
- 14

given by:(x.9) (X, hg)
induces an isomorphism of bundles
over the circle tu: Pg.* Pagoda
· Iso. classes ofprincipal G-bundles
over 88 one labelled by a
eases of elements of G.

· The amphismgroup
ofPg is

z(g) =[h= G) light=g]



Fact. Let G be a finite group.
Isomaphian classes of principal G-bundles
over a topological space X are in

1-1 correspondence with
elementsof

Hom (A,(X,x0), G)/G
4-p'if 7 qd(W) =gding
for all We it, (X, x07

Note thatsetting X= S7we
recover the claim that isom.
classes onein 1-1 correspondence
withconjugacy classes ofG.



9. EerieGageTheory:Part I,
G-gauge theory for m=1

F(81) =sim overgaugebundles
=B(Pg)
geG

BIPg) =Boltzmann weightfor Pg
This should only depend on the
isomorphism class ofg and hence

should be a class function on G.

So we write itas a sum over isom.

classes.



Being a classfunction we
can express

the Boltzmann
-

weightas

B(Yg) =(g)
(E(g) 1

where X is thecharacter

for some elementof in the

representation ring ofG. =)

F(81) =E
Orthogonalityrelations ->Sum
Projects toidentityisotypical component
of y, WLOG Take xg19)=1



Man F(S2) = Egil
-=1

so F(pt) = K.

general:

F(N1) =Functions (954)
F(Mn) =2
/ <P-Mn)

Pl
Gaarg

The discussion of amplitudes is best
deferred to after we introduce BC below

For now we justnote that:



for n =2 we have

F(82) =5 class functione3

NoworksoutaSiedere
(4,44)(g) =2.499,)4-(92)

91929
Natural basis are the characters

Xu in the irreps ME Frrep(G).

Orthogonalityrelations for matrixelements
of irreps -> Em = XrC) Xm is

a basis of idempotents
-(4) =1.4(1) defines a

Frobenirs structure and applyingthe
above exercise:



F (20) =4*(dimi)-28
·

it can be shown that this is

(116(2-22g,X)f)
so is indeed a sum of the Boltzmann

weights (16) overison classes of
G-bundles, up toan "invertible TRFT."

(to accountfor the (M1G1)*

factor.)



10.GeneseBackground Fields

In physics we generally need to
endow our spacetimes withgeometric
structures For example:
· orientation

· (spin structure
·Riemannian metric and/or conformalstruct.
· Principal G-bundle al connection.
In general these structures should
satisfy some form oflocality:
- Theyshouldpull back(or push-formad)
under differmaphisms
- they should satisfy a sheaf property
If they are defined on open sets
Hand & and agree on U12
Then thereis a unique extension to
HuV.



For us, these are beground fields
The TFTfructor gives the answer
to thepath integral:The dynamical
field's have been integrated out.
But the pathintegral will

typically be an interestingfunction of
The background fields.

E.g.Scalar field 4:Mngrr)is

Elgnr] =Sd e-Simpodvaly)

-
is an interesting function of the
metric.



Freed+ Hopkins [1301.5959] formalize a notion
of background field as a "sheaf
on Man,"a functor

5:Man." -> Set (beticalC
We then put F-structures on our
bordisms to destine an enhanced

category Burdan
and we can define aTFT
withsuch backgrouch fields as
F:Bordan-5) -> VECT
Works well for discrete structures
like orientation, principal G-bundles
withfinite G. Much more needs

to be said if I includes, say,
Riemannian metrics, conformal structures, ...



Interestingopen problem.Formulate field
Theories where Iincludes foliations.



11. Arey Quamous
EfTFT's

One ofthe mostfamous

examples is3d Chern-Simons

Theory. Perhaps the simplest
example is constructed from
a

gauge theory witha
U(I) gauge fields

ita

connection on a principal UIII
bundle P->M3> with

My a 3-dimensional oriented
manifold.Locally the
garge fieldis described by



a real Iform A with

globally-defined fieldstrength
FERYMs). Locally F=dA
The conentiated action inthe pathintegral

ex
iS =

Cexpi S AdA)
M3

Where
we have normalized A

So that Ihas periods in 242.

The action doesn'tlook garge
invariant, butunder "small"

gauge tuns A - At de

AdA -AdA+d(edA)



So if my is compactwort

boundary fAdA is

M3

gauge
invariant. Butunder

large gauge thns
A*Atw were

fillitiss

notquite well-defined.Betterway:
One canprove

thatit is possibletoextend

P+ M3 and its connection to

PMy with&My= M3. Then
the identityFnF =d(AdA)
and Stokestheorem motivates

The hypothetical definition:
SAdA =SMs

Problem:The extension is notunique.



⑭
M3

and in general SFSrFak
Whatsaves the day isthat
on the closed manifold

MyUMyJFaF e(at)'
:

SaFeR/an
is well-defined.

::if I is an even integer

explSNEis aC



good action principle
(Ifwe endow Ms, My with

spin structures we can extend

ger.
Theto k an odd inte

inclusion of spin structures is an

good example ofthe inclusion

ofbackground nondynamical
fields I.)
Note that the pathintegral measure"

exp( (AdA)
is metric independent. So
we expectthistodefine
a topological field theory.
That is almosttrue but



in definingthe pathintegral

F(M) Ios e(da

one mustintroduce a metric

to define one loop determinants.
One finds an overall dependence
on the metric

F(Ms) = 2xiWes9,FIMs)2

e
(withc =K( metric

independent
There are various approaches
to deal withthe metric anomaly.



1. Trytosubtractoff the
g
ravitational Chern-Simons term as

a "local counterterm." (Witten's paper
on theJones polynomial does this.)

2.Include background fields so
The TFT is defined on

the

correctbondism category Bordae)
An example ofon 5is a

framing, buta cruder structure
known as a 2-forming will suffice
(See Atiyah's paper onNT

fora

definition of 2-framing).



This basic example
of 3d UII

Chema-Simons they can be

generalized in several ways:

A.) Many UCI) fields AFI=1,--, w

Action =JkI5AdAS

very useful in the RHE.
The matrix FIsmustbe a symmetric
integral matrixand it determines an
integral lattice. The quantum
amplitudes can be expressed in
terms of invariants of thislattice.



B) Nonabelian gargefields.
Now take a connection on a

nonabelian principal G-bundle

P->Ms, for G a compact

simple grays. Locally the
connection is d+A Aer(-,y)
my

=Lie(2). We can from the
Chern-Simous form

d Tr(AdA+A) =Tr(Waf)
and the Chern-Simonsaction

STAdA+) =Trn)



For a suitable notion oftrace

LegTr =Tw forG=SU(N))
Imustbe an integer,and
Rhen (for Mo cptwort barry)

exp(2+rd+))
=exp(i (TFaF)
is well-defined.

Exercise:Compute the
Change of Tr (AdA+E AYS
under

gauge trun



d+A -> g'(d+A)g
to see whythe 3-form'

Tr [AdA+EAS) is notglobally
well-defined on Ms.
One can define anice

Chern-Simons-Witten FFTfor

my compact group. In general
itis determined simply by
a choice of

G-compact Lie group
kGHY(BG,z) "level

Il

Thistopic continues to influence

much currentresearch



For more on 3d Chern-Simons

Theory see my 2019 TASE

lactures and themany references
Therein.

One can also extend3d

CS Rheory to non compact
gro.Heretheflavortheone
not TFTS. For example, state

spaces are typically 1-dimil.
For more aboutthis very active
research topic see:

I Witten "Analytic ContinuationOf
Chern-Sin!

2. TudorDimofte - review

3.Andersant Kashaer.-ICM Address



C.) Chern-Simons theories

can be "Upgraded"to higher-dimensi.
Theories by using new exterior
data:For example for a scidbly
normalized Closed 1- fom me

can contemplate a 4dtheory like

(wTr(AdA+A
One needs tobe careful here
togetawell-defined propagator.
This kind of theory was studied
by Loser, Moore, Nebrasor, Shatashvili

= 1995 and further developed in
Nikita Nekrason's PhD Thesis.



More recently ithas played a

major
role in works by

Kevin Costello and callaborators,

especially in providing new insights
intointegrable models. See, e.g.
The series ofpapers

of Costello,
Yamazaki,and Witten.
Asimilar expression makes

an appearance inan
effective action

for 4d topological insulatorswith
nontrivial firstChem-class of
the band structurebundle. See

6. Moore, "Acommenton Berry connections,



D. "BE Theories "

Another way
togeneralize to

higher dimensions isto replace
the closed 2 - FormI af

Maxwell theory by an effor
F=2M)
dF =0 => F

=dA

A:locally defined (1-1)
-form.

If we have A, Athen

exp(ix(Ad



makes sense so long as
l +l=n +1

A good way
to think about

These actions makes useof

differentialcohomology -
discussed

later.



Non examples:
-

A. 2D Yang-Mills
Action =Str(F) +Mtr142)

area form
F(Ig,A) =E(dimp)=2-ACe(R)

R:irrep
does nothave good A to farg=0
B. Donaldson-Witten, Vata-Witten,

Kapustin-Witten, Rozansky - Witten,
Gromor-Witten, X-Floor,y-Floer, z=Flour

Q-closed sector wI Q=O

Very differentfeeling
TypicallyOnly partiallydefined


