TASI Lecture 1: Introduction To Topological Field Theory

June 12, 2023

1. General Plan

These lectures are meant to be very elementary introductions to topological field theory and differential cohomalogy.
Lectures $1+2$ concern TFT
Lectures $3+4$ concern differential cohomology
2. Basic Picture In TFT: Iteuristic Motivation

One central goal of physics is to describe/predict time evolution of quantum systems. This is abstracted in QM/QFT to describing amplitudes.

In n spacetime dimensions we might have:
initial spatial manifold N_{n-1}^{0} final spatial manifold N_{n-1}^{\prime} and then there is a spacetime that
interpolates between them

In quantum theory

The interpolating history gives a linear $\operatorname{map} F: \mathscr{H}_{0} \rightarrow \mathscr{L}_{1}$
Topological Field Theory (TFT) is meant to capture his very basic idea in a way which expresses
locality but eliminates almost all the complications of typical quantum systems.

But in TFT we postulate that only the diffeomorphism class of N°, N^{\prime}, M matters. But the formulation of TFT motivates a framework: The functorial formulation of field theory for desiring general field theories As such it is a topic of current research, while TV.T has a well-deneloped' mathematical theory with rigorous results and is also bering further developed

So, we are going to axiomatize The answers we get from, say, ab path integral.

Topological \Rightarrow no metric dependence,
in particular no choice of signature. But we should think of it as axiomatizing Eudidean/Wide-notated Q FT.
$\begin{aligned} & \text { To a closed } \\ & N_{n-1} \\ & \partial N_{n-1}=\phi\end{aligned} \mathbb{C}\left(N_{n-1}\right): A$ vector space,
"The space of stater"
Isomorphism class only depends on differ class of N_{n-1}. "Topological invariant"
(*) $F\left(N_{n-1}, H N_{n-1}^{\prime}\right)=F\left(N_{n-1}\right) \otimes F\left(N_{n-1}^{\prime}\right)$
G in Q_M. $\mathscr{L}_{1}, \mathscr{L}_{2}$ for noninteracting systems then combined system has space of states $H_{1} \otimes \mathscr{L} l_{2}$.
Remarks: 1. * Is the beginning of the implementation of locality: LOCY
2. Note Well! It fallows from * that $F\left(\phi_{n-1}\right)=\mathbb{C}$
3. Compare with traditional topological invariants:

$$
\begin{aligned}
H_{k}\left(M \| M^{\prime}\right) & =H_{k}(M) \oplus H_{k}\left(M^{\prime}\right) \\
\pi_{1}\left(M \Perp M^{\prime}\right) & \text { Not even detiredo need } \\
& \text { to choose a basepoint. }
\end{aligned}
$$

Now consider an n-manifald with boundary

We want to think of this as a spacetime connecting in- and out -states We need to choose which spatial Slices are" "in" and which are "out." egg. red arrows above indicate in and out.
N.B.! We did not assume our manifalds are oriented! We could (andwill) Consider an analogous story for oriented manifulds, but that is not necessary here.

So, in the above example, our quantum amplitudes will give a linear map:

$$
F\left(M_{n}\right): \mathscr{H}\left(N_{n-1}^{0} \Perp \tilde{N}_{n-1}^{0}\right) \rightarrow \mathscr{H}\left(N_{n-1}^{\prime}\right)
$$

The next aspect of locality me wish to axiomatize is gluing. In a QFT The Feynman path integral over field Onfigurations on Mu de tines a "propagator" on kernel map on initial and final field configurations:

$$
K\left(\phi_{f}, \phi_{i}\right)=\frac{\left(\phi_{i} M_{n} \sum_{N^{0}}\right.}{\left(\phi_{f}\right.}
$$

Then the amplitude $F\left(M_{n}\right)$ would be expressed as

$$
\left(F\left(M_{n}\right) \underline{\Psi}_{i}\right)\left(\phi_{f}\right)=\int K\left(\phi_{f}, \phi_{i}\right) \Psi_{i}\left(\phi_{i}\right) d \phi_{i}
$$

But we expect that if are cut M_{n} along someintermediate (n-1) -fold

$$
\phi_{i}
$$

$$
\phi_{f}
$$

$$
K\left(\phi_{f}, \phi_{i}\right)=\int \underbrace{K \phi_{f}, \phi_{i n t}}_{M_{n}^{\prime}}) \underbrace{K\left(\phi_{n t}, \phi_{i}\right)}_{M_{n}^{0}} d \phi_{i n t}
$$

This motivates the gluing axiom:

$$
\begin{aligned}
F\left(M_{n}\right) & =F\left(M_{n}^{1}\right) \circ F\left(M_{n}^{0}\right) \\
& =F\left(M_{n}^{1} \uparrow M_{n}^{0}\right)
\end{aligned}
$$

gluing along $N^{\text {int }}$
This is the se cold aspect of locality we wish to include: $\angle O C 2$

Now, we might not yet be able to give rigorous mathematical defin, tons to the most interesting part integrals for quantum field Y Kerry - but are can certainly axiomratize certain properties we would definitely want there path integrals to satisfy. The above gluing axiom is an example of such a property. To put Y his on a nice and precise mathematical foundation we introduce the iclea of "bordism."
3. Bordisms

For much more about bordism theory (with a view to applications in TFT, See: Dan Freed, "Bordism: Old and New"

To save space we will refer to a compact manifold without boundary as a "closed manifold.

Def: Let N_{n-1}^{0}, N_{n-1}^{1} be closed manifolds. A burdism
from N_{n-1}^{0} to N_{n-1}^{\prime} is the fallowing collection of data:
a.) Compact n-manifold with boundary M_{n}
b.) Decomposition of boundary components into "in" and "out" $\partial M_{n}=\left(\partial M_{n}\right)^{\text {in }} \cdot n\left(\partial M_{n}\right)^{\text {out }}$
c.) Differ's of caller neighborhoods $\theta_{i n}:$

$$
\begin{aligned}
& N_{n-1}^{0} \times[0, \varepsilon) \longrightarrow M_{n} \\
& N_{n-1}^{0} \times\{0\} \longrightarrow\left(\partial M_{n}\right)^{\text {in }}
\end{aligned}
$$

$\theta_{\text {out }}: N_{n-1}^{\prime} \times(1-\varepsilon, 1] \rightarrow M_{n}$

$$
N_{n-1}^{\prime} \times\{1\} \longrightarrow\left(2 M_{n}\right)^{\text {out }}
$$

- A diffecomopphiom af bordisms:

$$
N_{n-1}^{0} \overbrace{\downarrow^{\psi},}^{\left(M_{n}^{\prime}, \theta_{\text {in }}^{\prime}, \theta_{\text {out }}^{\prime}\right)} N_{n-1}^{1}
$$

is a diffeo $\psi: M_{n} \rightarrow M_{n}^{\prime}$ so that

- One of the reasons it is useful to incorporate the data of $\theta_{\text {in, }}$ Gout in the definition of a bordism is that it allows us to glue bordisms

$$
\begin{aligned}
& \left(M_{n}, \theta_{\text {in }}, \theta_{\text {out }}\right): N^{0} \longrightarrow N^{\prime} \\
& \left(M_{n}^{\prime}, \theta_{\text {in }}^{\prime}, \theta_{\text {out }}^{\prime}\right): N^{1} \longrightarrow N^{2}
\end{aligned}
$$

into a single bordism $N^{0} \rightarrow N^{2}$
If we just considered manifolds with boundary we could not account for the possible "twists" in gluing the two bordisms together.

Example: Consider the following O-manifolds $N^{0}=N^{\prime}=$ disk int union
Question: How many bordismes (up to differ)

But also

because we can take disjoint union with bondioms $\phi \longrightarrow \phi$, ie closed compact manifolds

In IT T we associate to a bordism a linear map $F\left(\left\{M_{n}, \theta_{\text {in }}, \theta_{\text {out }}\right\}\right)$ from $F\left(N_{n-1}^{0}\right) \longrightarrow F\left(N_{n-1}^{1}\right)$, and postulate that it only depends on the "differ equivalence class" of the bonelism:

Corollary: $F\left(N_{n-1}\right)$ is a representation of Diff $\left(N_{n-1}\right)$.
Note: The representation factors Through to a representation of the mapping class group $\pi_{0}\left(D_{i f f}\left(N_{n-1}\right)\right)$.
Side remark on math'(1) Let G be a topological group. Then the connected component of the identity, G_{0}, is a normal subgroup (exercise!) and

$$
1 \rightarrow G_{0} \rightarrow G \rightarrow \pi_{0}(G) \rightarrow 1
$$

so $\pi_{0}(G) \cong G / G_{0}$ is a group. For a general topological space x^{6} $\pi_{0}(X)$ is not a group.

A good example of a nontrivial $\pi_{0}(\operatorname{diff}(N))$ is given by taking $N=T^{2}=(\mathbb{R} \oplus \mathbb{R}) / \mathbb{Z} \oplus \mathbb{Z}$. The linear tan. on $\mathbb{R} \oplus \mathbb{R}$

$$
\binom{\sigma^{1}}{\sigma^{2}} \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\sigma^{1}}{\sigma^{2}} \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G(2, z)
$$

is compatible with $\mathbb{Z} \oplus \mathbb{Z}$ group action and descends to an a transformation on the torus. The projection to the quotient group $\pi_{0}\left(\operatorname{Diff}\left(T^{2}\right)\right)$ is nontrivial because it acts nontrivially on $H_{1}\left(T^{2}, \mathbb{Z}\right)$. Note this example is somewhat atypicd since we have presented a $G L(2, \mathbb{Z})$ subgroup of $\operatorname{Diff}\left(T^{2}\right)$ rather Than as a quotient group. In general we could not do that.
(2) Bordism Groups

Using the data of $\theta_{\text {in }}, \theta_{\text {out }}$ we can glue together bordisus

$$
N^{0} \xrightarrow{(M, \theta, \theta) \circ(M, \theta, \theta)} N^{\prime} \xrightarrow{(M, \theta, \theta)} N^{2}
$$

to prove That bordism is an equivalence relation on $(n-1)$-manitills, Under disjoint union we form an Abelian group which is 2-torsion beruse

Shows $[N] \|[N] \cong\left[\phi_{n-1}\right]$
Note that $\Omega_{1}=\{0\}$ is the trivial group, be cause every circle bounds a disk. But $\left[\mathbb{R} \mathbb{P}^{2}\right] \in \Omega_{2}$ is nontrivial: if $\exists \partial M_{3}=\mathbb{R} \mathbb{P}^{2}$ then gluing $M_{3} \underset{\mathbb{R}^{R}}{ } \mathrm{M}_{3}=$ closed 3- fold with Euler Characteristic $2 \chi\left(M_{3}\right)-1$, but this moot vanish. In fact, by the classification The for surfaces $\Omega_{2} \cong \mathbb{Z} / 2 \mathbb{Z}$.

Bordism groups flay an important rale in the application of $\sqrt{F} T$ to the mathematical Theory of topological phases of matter.

Returning to TFT, the rules are:

$$
\begin{aligned}
& F:\left\{\begin{array}{l}
\text { copt }(n-1) \text {-folds } \\
\partial N=\phi
\end{array}\right\} \rightarrow \begin{array}{l}
\text { Vector spaces } \\
\text { (over } \mathbb{C}, \text { in these } \\
\text { lectures }
\end{array}
\end{aligned}
$$

Corollaries:
1.) Since $\operatorname{Hom}(\mathbb{C}, \mathbb{C}) \cong \mathbb{C}$ canonically:
(Every lin. tm. $\mathbb{C} \rightarrow \mathbb{C}$ is of the form $T(z)=z_{0} z$ so $T \leadsto z_{0}=T(1)$)
\Rightarrow For M_{n} cpt, without bury: $H_{n} \phi_{n-1} \rightarrow \phi_{n-1}$ $F\left(M_{n}\right) \in \mathbb{C}$ "partition function"
2.) Consider a bordiom

$$
M_{n}: \phi_{n-1} \longrightarrow N_{n-1}
$$

Then $F\left(M_{n}\right) \in \operatorname{Hom}\left(\mathbb{C}, F\left(N_{n-1}\right)\right)$

Remark: The vector might well be the Zero-vector. In
Q.M a (pure) state is represented by a raule 1 projection operator. Pf $\psi \in \operatorname{Im} P$ and ψ is Nonarro $P=\frac{|\psi\rangle \psi \mid \text {. So the term }}{1 \psi \|^{2} \text { "Statespace" is }} \begin{aligned} & \text { in accurate. }\end{aligned}$
3.) Consider any cylinder $M_{n}=N_{n-1} \times[0,1]$ with $\theta_{\text {in }}=\theta_{\text {out }}=$ identity

$$
F\left(M_{n}\right) \cdot F\left(M_{n}\right)=F\left(\begin{array}{c}
0 \\
0 \quad)_{N_{n-1}}^{2} \\
N_{n-1} \quad N_{n-1}
\end{array}\right)
$$

topelesical!

$$
\Longrightarrow F\left(M_{n}\right) \in \operatorname{Hom}\left(F\left(N_{n-1}\right), F\left(N_{n-1}\right)\right)
$$

is a projector: All amplitudes ane zero on $\operatorname{Ker}\left(F\left(M_{n}\right)\right) \Rightarrow$ Assume WLOG $F(O:)=$ Idenity.
4.) "Dualizability" N pt. wort beery

$$
F(\underset{O}{O})
$$

set $F(N):=V$

$$
V \otimes V \rightarrow \mathbb{C}
$$

Diff action \Rightarrow Symmetric bilinear form

$$
V \otimes V \underset{b}{\longrightarrow} \mathbb{C}
$$

$$
F\left(\sum_{\theta}^{\rightarrow}\right): \mathbb{\tilde { b }} \underset{\vec{b}}{\longrightarrow} V
$$

Now consider the S-diagram

This gives a $\operatorname{map}($ recall $V=F(N))$

$$
\begin{aligned}
V \longrightarrow V(V \otimes V) & \cong(V \otimes V) \otimes V \\
\text { Id\&ひ} \bar{b} & \xrightarrow{b \otimes I d} V
\end{aligned}
$$

The composition must be the identity. This implies that b is nondegenerate and $V=F(N)$ is finite dimensional.

Pf: Choose a basis: $b\left(v_{i}, v_{j}\right)=b_{i j}$

$$
\tilde{b}(1)=\tilde{b}^{i j} v_{i} \otimes v_{j}
$$

We learn that $\tilde{b}^{i j} b_{j k}=\delta_{k}^{i} \Rightarrow$ $b_{i j}$ is invertible. If r were ∞ dimil we could define a H.S. structure declaring $\left\{V_{i}\right\}$ to be 0 N . We would want $b_{i j} V_{i}^{v} \otimes V_{j}$ and $\widetilde{b}^{i j} v_{i} \otimes V_{j}$ to be normalizable This is not possible.
5. It fallow er that

$$
\begin{aligned}
F\left(N \times S^{1}\right) & =\operatorname{dim}_{\mathbb{C}}(F(N)) \\
F & \left(\frac{N}{\vdots}\right) \\
\sum_{N} & \tilde{b}^{i j} b_{j i}=S_{i}
\end{aligned}
$$

Note: In many discussions of QFT the overall normalization of the path integral gets no respect. This is not the case in TFT where the overall normalization has a definite meaning and for some manifolds is even quantized. One of The many applications is to produce topalogical invariants:
$F(M)=$ topological invariant, often an enumerative invoriont
Here the normalization is crucial! We are counting (curves, instantors, monopales, o....)
4. Example: $n=1$
$n=1: \exists!$ connected 0 -dimensional mild
 symmetric) vector space. Then we have nondeg. Form

$$
F\binom{\overrightarrow{0}}{\overrightarrow{0}}: V \otimes V \longrightarrow \mathbb{C}
$$

Thatis all! We now have the basic data to compute any amplitude we like, such as:

Nontrivial fact:
No matter how use cut along intermediate channels well get the sameresult.
5. Example 2: Oriented $n=2$ Theory
$n=2$. To avoid complications with classification of unoriented surfaces we work with oriented bondisms.
\exists Only 1 connected 1-manifald whout bdry: $F\left(S^{\prime}\right)=\mathrm{V}$
Two algebraic structures:
Canonical bordiom $\delta^{\prime} \rightarrow \phi, \quad \rightarrow$ the disk
$\theta: V \longrightarrow \mathbb{C}$
Multiplication: Pair of paints

$$
m: V \otimes V \longrightarrow V
$$

A useful way to look at it: Disks within disks:

Corallery 1: Commutative and associative multiplication

Corallory 2 : For any n-dimil TFT $F\left(S^{n-1}\right)$ is a commutative algebra.

In case $n=2$ the bilinear form

$$
b\left(v_{1}, v_{2}\right)=\theta\left(V_{1} \cdot v_{2}\right)
$$

is nondegeverate.
Def: An associative and commutative algebra $\hat{\theta}: v \rightarrow \mathbb{C}$ sit. $b\left(v_{1}, v_{2}\right)=\theta\left(v_{1} v_{2}\right)$ is nondegenerate is a Frobenius algebra

Sewing Theorem and Morse Theory
Using the data (V, m, θ) one can compute any amplitude

By cutting into elementary pieces:

The question arises whether two different cuttings into elementary pieces give the same amplitude.

Sewing Theorem: Well-defined amplitudes impose no further algebraic relations on (V, m, θ)

Put differently: To give an $n=2$ dine oriented TFT is to specify a Frobenius algebra:
For a long time this was a folk theorem, attributed variously to D. Friedan, R. Dëkgraaf, G. Segal, -

A careful proof is in the appendix of the expository paper of G.M. +6. Seal. The basic idea is to Use a Morse function to give a decomposition of M into level sets. Consider a e^{∞} function:

$$
f: M \longrightarrow \mathbb{R}
$$

"spatial slices" $f^{-1}(t)=N_{t} \subset M$
$f^{-1}(t)$ will be a nice smooth mild Unless t is a critical value.
$p:$ Critical point: $\quad d f(p)=0$
Morse critical point: $\left.\frac{\partial^{2} f}{\partial x^{\prime} \partial x^{j}}\right|_{p}$ nondeg.
A Morse function on a bondism $M_{n}=N_{n \rightarrow 1}^{0} N_{n-1}^{1}$ is excellent if it is constant on N°, N^{\prime} and the critical points can be ondered so the critical values one

$$
c_{0}=f\left(N^{0}\right)<c_{1}<\cdots<c_{N}<c_{f}=f\left(N^{\prime}\right)
$$

The spatial slices $f^{-1}(t)$ are all diffeomorphic for $c_{i}<t<c_{i+1}$
But there is topology change as we cross a critical point.
$\varepsilon_{x}: n=1$
$f^{-1}(t), t>t_{c}$
$f^{-1}(t)$
$t<t_{\text {or }}$

$\varepsilon x: n=2$

Note well, the neighborhood of the critical point looks like this

N.B. This is a "manifold with comers."

Now we can change time-slicings by convidenty a path of smooth functions f_{s} which are excellent Morse functions for generic s.

Cerf Theory: In the (Whitney) toonlayy of $e^{\infty}(M \rightarrow \mathbb{R})$ the seton excellent Morse functions is open and dense bit disconnected.
Define a function $f: M_{n} \rightarrow \mathbb{R}$ to be "good" if it is Morse everywhere except for one on two critical points, and

- One critical point locally of the form $\pm y^{2}+x^{3}$
- Twi critical points have the same value

Theorem: The set of excellent and good functions is a connected set. The good but not excellent functions form a real codimension one subset.

So a path of excellent + good fractions f_{s} connecting two time slicing, will cross a finite set of critical values $s_{1}, \ldots s_{k}$ where the functions are good but not excellent

Example: $n=1, f_{s}(x)=\frac{x^{3}}{3}-5 x$

It now fallows from Cerf-Morse theory Y hat any two changes of time slicings are related by some elementary changes. Invariance under Those elementary changes is guaranteed by the algebraic axioms of a commutative associative Frobenius algebra. This is how the sewing theorem is proven.

Semisimplicity Choose an ondered bails $\left\{v_{i}\right\}$ for V. Consider the operator L_{i} defined by left-maltiplication by v_{i}.
It has matrix elements:

$$
L_{i}\left(v_{j}\right)=V_{i} v_{j}=N_{i \ddot{ }}^{k} v_{k}
$$

Commutativity $\Rightarrow\left[L_{i}, L_{j}\right]=0$
If the L_{i} are all diagonalizable we say the algebra V is semi-simple
In this case there is a basis of idempotent $\left\{\varepsilon_{i}\right\}$:

$$
\varepsilon_{i} \varepsilon_{j}=\delta_{i j} \varepsilon_{i}
$$

and the only invarionts of the Frobenius algebra are the dimension and the values of the trace $\theta\left(\varepsilon_{i}\right)=\theta_{i}$

Remarks (1) If we view this model as a baby model of string Theory with zero-dimensional target space Then $X=\frac{11}{i} p t_{i} \quad p t_{i} \longleftrightarrow \varepsilon_{i}$ and θ_{i} is the value of the string coupling/dilator.
(2) We can also use the $n=1,2$ theories as topological models of quantum gravity. In this context they are useful playgrounds for exploring the role of topology change and "baby universes" in EQG. An important paper on this is

Marolf + Max field 2002.08950
with clarifications, generalizations, and further extensions in Banerjee + Moore, 2201.00903 which in turn inspined a general framework for EQG laid out by D. Friedan: 2306.????

Exercise: Suppose V is a semisinple $F A$
(a.) Show that the state produced by a hande is

$$
F(\circlearrowright 0)=\sum_{i} \theta_{i}^{-1} \varepsilon_{i}
$$

(b.) Suppose \sum_{g} is a connected genus g surface without boundary. Show that

$$
F\left(\sum_{g}\right)=\sum_{i} \theta_{i}^{1-g}
$$

(c.) Therefore the $\mathrm{vac} \rightarrow \mathrm{vac}, \phi \rightarrow \phi$ bondism given by summing over connected topologies is $\quad F_{\text {cornered }}=\sum_{i} \frac{\theta_{i}}{1-\theta_{i}^{-1}}=\sum_{i} \lambda_{i}$
Show that with a suitable weighting of topologies the full $\mathrm{rac} \rightarrow \mathrm{rac}$ amplitudes is

$$
F_{\operatorname{vac} \rightarrow \operatorname{Vac}}=\prod_{i} e^{\lambda_{i}}
$$

Exercise: 8 how that $F(0)$ defines the unit element for the algebra multiplication in V by illustrating a suitable change of Morse function
Exercise: Illustrate the change of Morse function that implies the multiplict on V is associative.
Exercise:
Consider a compact orientable manifold X with all odd Betti numbers b: $(X)=0$. show that the cohomalogy group $H^{*}(X, \mathbb{C})$ is a commutative associative Frobenius algebra, Jut that it is not semisimple. Compute all the amplitudes for $x=\mathbb{C} \mathbb{P}$!
6. Open-Closed Oriented $n=2$ AND EMERGENCE OF CATEGORIES

If we think of $2 d n=2$ TFT as a model of topological string theory with zero-dinensional target it is national to ask about the extension to open Strings
Replace spatial

Now we need boundary conditions/ labels on the end of our string. Let's call them $a, b, c, \cdots \in B_{0}$
So

Now consider the bordism:

We conclude that:

1. $\theta_{a a}$ is an associative, but not necessarily commutative algebra.
2. $\theta_{a b}$ is a bimodule for $\theta_{a a} \times \theta_{b b}$
3. There is an associative multiplicatic
$\theta_{a b} \times \theta_{b c} \longrightarrow \theta_{a c}$ given by
The above picture.
The proof of associativity is:

Thus the structure we get is precisely That of a category

Def: A category is a collection of data $\left(C_{0}, C_{1}, \Phi_{0}, P_{1}, m\right)$ where
(a.) C_{0}, C_{1} are sets
C_{0} : "the set of objects" $\binom{$ also denote }{$C_{0}:=0 \mathrm{bj}(\mathrm{C})}$
C_{1} : "the set of morphisms"
(b.) $C_{1} \xrightarrow[p_{0}]{p_{1}} C_{0} \begin{gathered}\text { codomain maps } \\ \text { domain }\end{gathered}$ Denote $\left\{f_{\in} C_{1} \mid p_{1}(f)=y: P_{0}(f)=x\right\}:=C(x, y):=\operatorname{Hom}(x, y)$
(c.) Define $C_{2}=C_{1} p_{1}^{x} p_{0} C_{1}$

$$
=\left\{(f, g) \mid p_{\sigma}(f)=p_{1}(g)\right\}
$$

the set of composable pains of morphioms
$m: C_{2} \longrightarrow C_{1}$. Denote m $f_{i} g$):=fog

Satisfying conditions:

$$
\begin{aligned}
\text { (a.) } & \forall x \in C_{0} \exists \text { morphism } 1_{x} \in C(x, x) \\
\text { s.t. } & \forall f \in \operatorname{Hom}(y, x) \quad 1_{x} \circ f=f \\
& \forall g \in \operatorname{Hom}(x, y) \quad g \circ 1_{x}=g
\end{aligned}
$$

(β.) Consider the set of 3 composable morph's.

$$
\begin{aligned}
& C_{3}=\left\{(f, g, h) \mid p(f)=p_{1}(g) \sum_{i}^{\prime} p_{0}(g)=p_{1}(h)\right\} \\
& C_{3} C_{2} C_{d \times m}^{m} C_{2} \quad \text { ie. }(f \cdot g)_{0} h=f_{0}(g \cdot h)
\end{aligned}
$$

\Rightarrow For $2 d$ open-closed TFT. There is a category of bounglar conditions: $C_{0}=$ set of boundary conditions a, b, c.

$$
\operatorname{Hom}(a, b)=\theta_{a b}
$$

$m=$ multiplication
7. Some Background On Categories

In general it is often useful to think of a category as a directed graph Objects: Vertices of graph Mophisms: Oriented edges of graph.

For US, avery important category is the bordism category Bord $\langle n-1, n\rangle$ Objects: Smooth, closed, ($n-1$)-falls Mophium: Bordisms (up to differ.)
Composition m : gluing of bordisms.
Exercise: What is the identity morphism?

Another important category for us is VEST

$$
\begin{aligned}
& \text { Objects }=f \cdot d . \mathbb{C} \text {-vectarspaces } \\
& \text { Mophisms }= \mathbb{C} \text {-linear transformations } \\
& \text { between V.s. }
\end{aligned}
$$

$m=$ composition of linear maps
With one more idea from category Theory we can nicely formalize one key aspect of TFT:
Def: Let C, D be two categories. A functor $F: C \longrightarrow D$ is a pair of maps

$$
\begin{aligned}
& F_{0}: C_{0} \longrightarrow D_{0} \\
& F_{1}: C_{1} \longrightarrow D_{1}
\end{aligned}
$$

such that $F_{1}: \operatorname{Hom}(x, y) \rightarrow \operatorname{Hom}_{D}\left(F_{0}(x), F_{0}(y)\right)$ either $F_{1}(f \circ g)=F_{1}(f) \circ F_{1}(g)$ (Covering) OR $F_{1}(f \circ g)=F_{1}(g) \circ F_{1}(f) \quad$ (Contraveniont)

What we've said so far is that the role Fofanndine TFT is that it is a functor:

$$
\text { F: Borg }{ }_{n-1, n>} \rightarrow \text { VECT }
$$

The equation

$$
F(f \circ g)=F(f) \circ F(g)
$$

captures LOC2.
But what about LOC1?
ie.

$$
F\left(N \Perp N^{\prime}\right)=F(N) \otimes F\left(N^{\prime}\right)
$$

Loo 1
To incorporate 1 me need the notion of isomorphism of functors, so we need three more definitions from category theory:
Def: Given categories C, D and two functor

a natural transformation (ak.a. morphism of functors") denoted

$$
\tau: F \Rightarrow G
$$

is a collection of maps τ_{x} indexed by $x \in C_{0}=0 b_{j}(C)$ such that, for all $x, y \in C_{0}$ and all $f \in \operatorname{Hom}_{C}(x, y)$

$$
\begin{array}{rlr}
F(x) & \xrightarrow{F(f)} F(y) \\
\tau_{x} \downarrow & & \downarrow \tau_{y} \\
G(x) & G(f) & G(y)
\end{array}
$$

Example: The $k^{\text {th }}$ integral cohumalegy is a contravoriant functor:

$$
H_{\mathbb{Z}}^{k}: T O P \longrightarrow A B \text { GROUP }
$$

$$
\text { On objects: } H_{\mathbb{Z}}^{k}: X \rightarrow H^{k}(x, \mathbb{Z})
$$

 $\left(\begin{array}{ll}f \text { a continuous mog) } \mathbb{Z} & f^{*}: H^{k}(Y, \mathbb{Z}) \rightarrow H^{k}(x, \mathbb{Z})\end{array}\right.$
Then the cup product is a 4 tm between $H_{\mathbb{Z}}^{k_{1}} \oplus H_{\mathbb{Z}}^{k_{2}}$ and $H_{\mathbb{Z}}^{k_{1}+k_{2}}$

$$
H^{k_{1}}\left(x_{1} \mathbb{Z}\right) \oplus H^{k_{2}}(x, \mathbb{Z}) \underset{\tau_{x}=\text { cupprodvct }}{\longrightarrow} H^{k_{1}+k_{2}}(X, \mathbb{Z})
$$

Similarly, Steenrad squares are natural transformations.

Exercise For $V \in \operatorname{Obj}(V E C T)$ define a functor $F_{V}: V E C T \rightarrow V E C T$

$$
\begin{aligned}
\text { by } F_{V}(W):= & \operatorname{Hom}(V, W) \oplus V \\
F_{V}\left(W_{1} \xrightarrow[\rightarrow]{T} W_{2}\right) \quad & \xrightarrow{\text { om }}\left(V, W_{1}\right) \oplus V \\
& \operatorname{Hom}\left(V, W_{2}\right) \oplus V
\end{aligned}
$$

show that the evaluation map

$$
\begin{aligned}
\tau_{W}: F_{v}(w) & \longrightarrow W \\
A \oplus v & \longmapsto A(v)
\end{aligned}
$$

is a natural tm of F_{V} to the identity functor. Id:VECT \rightarrow VEST:

Def: An isomorphism of functors
$\tau: F_{1} \rightarrow F_{2}$ is a natural tronsfomatic
τ such that there is a natural transtamein
$\tau^{\prime}: F_{2} \rightarrow F_{1}$ with commutative diagrams

$$
\begin{aligned}
& \tau_{x} \tau^{F_{2}(x)} \tau_{x}^{\tau_{F_{1}}^{\prime}(x)} \\
& F_{1}(x) \\
& F_{1}(x)
\end{aligned} \stackrel{\tau}{1}_{\varepsilon_{1}}^{\tau_{x}^{\prime}} F^{F_{1}(x)} \underset{\underset{F_{F_{2}}(x)}{F_{2}(x)} \tau_{x}(x)}{\tau_{x}}
$$

REMARK
Def: An equivalence of categories $C!D$ is a pair of functors

$$
F: C \rightarrow D \text { \& } G: D \rightarrow C
$$

with isomorphisms of FOG and GOF to The idectity functors.
Many, many, important results in maths are stasempats of equivdence of cot's.

Def: A tensor category (a.k.a. "monoidal) is a category with a functor

$$
\otimes=C \times C \rightarrow C
$$

and an isomorphismut of the functors

$$
\begin{gathered}
\otimes_{12} \times I d \\
C \times C \times C \\
I d \times \otimes_{23}> \\
C \times C, \\
\otimes
\end{gathered}
$$

A is known as the associator:

$$
A_{x, y, z}:(x \otimes y) \otimes z \longrightarrow x \otimes(y \otimes z)
$$

and it must satisfy the pentagon identity:

$$
\begin{aligned}
& \left(\left(x_{1} \otimes x_{2}\right) \otimes x_{3}\right) \otimes x_{4} \rightarrow\left(x_{1} \otimes x_{2}\right) \otimes\left(x_{3} \otimes x_{4}\right) \\
& \left.\left(x_{2} \otimes x_{3}\right)\right) \otimes x_{4} \\
& x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes x_{4}\right)\right)
\end{aligned}
$$

Finally There is an identity object $\mathbb{1}_{C} \in \mathrm{Ob}_{j}(C)$ and natural tins:

$$
\begin{aligned}
& 2_{L}: I_{C} \otimes(\cdot) \longrightarrow I d \\
& 2_{R}:(\cdot) \otimes I_{C} \longrightarrow I d
\end{aligned}
$$

Satisfying some natural compatibility Conditions. See EGNO for a complete treatment.
EGNO = Etingof, Gelaki, Nikshych, Ostrik

Remark: Fusion of anyons.
Mathematical desorption of anyons identifies them with objects in a $\&$ category. "The \otimes is regarded as "fusion of the any ono" and can be pictured as

$$
t \in \operatorname{Hom}(a \otimes b, c)
$$

The associator is

Exercise: Write out the pentagon diagram using t his notation.
$A \otimes$ - functor between $\otimes^{\text {monoidal }}$ categories $F: C \rightarrow D$ is a functor that presemes structure
in the sense that there are isomaphiuns

$$
\begin{aligned}
& F(X \otimes Y) \underset{\theta_{x, Y}}{\longrightarrow} F(X) \otimes F(Y) \\
& F\left(\mathbb{1}_{C}\right) \underset{\eta_{C}}{\longrightarrow} \mathbb{1}_{D}
\end{aligned}
$$

satisfying some \rightarrow conditions... (omittexthere)
Remark: A braiding is an isomanphion of $\otimes: C \times C \rightarrow C$ with

So: $C \times C \rightarrow C$ where $\sigma:(X, Y) \longrightarrow(Y, X)$ is the exchange functor. This amounts to the data of isomorphism s :

$$
\Omega_{x, y}: x \otimes y \rightarrow y \otimes x
$$

Remark In the theory of anyons the anyous are the objects of a tensor catory and x by is soled the fusion of the anyons. $\Omega_{x, y}$ is the braiding.
In there notes the have $\Omega_{y, \times} \times \Omega_{x, y}=I d_{x o y}$, ie. we work with symmetric tensor categories. In general, for anyous, $\Omega_{y, x} \Omega_{x, y}$ is not the identity.

Now VECT is a \& category, using product of vector spaces. The associator is trivial. Also, Bond $\langle n-1, n\rangle$ is a B-categon, using disjoint union. They are both symmetric \otimes.cat's

Exercise: What is the monsidal unit 1_{C} in VECT one in Bard <n-1,n>?

Def: An n-dimil $T F T$ is a symmetric $\&$-functor

$$
F: \text { Bond }_{\langle n-1, n\rangle} \longrightarrow \text { VEST }
$$

Well how give an important example: Finite group gauge theory. But first, we need some more math...
8. Some Background On G-Bunalles

- For a group G a G-torson or principal homogeneous space is a set T with a free \& transitive Gaction on T.
- For G a topological group and X a topalogical space a principal G-bundle over X is a map of topological spaces $\pi: P \longrightarrow X$ such that.
1.) P admits a continuous cend free right G-action sit. $\pi(p \cdot g)=\pi(p)$ and the fibers $\pi^{-1}(x)$ are G-tensions
2.) $\pi: P \rightarrow X$ is locally trivial: $\forall x$, $\exists u_{x} \quad \pi^{-1}\left(u_{x}\right) \xrightarrow{\phi u_{x}} u_{x} \times G$

$\phi_{u_{x}}$ is G-equiremiant.

Key example for us:
Choose $g_{0} \in G$ and let \mathbb{Z} act on $\mathbb{R} \times G$ by $n:(x, g) \longrightarrow\left(x+n, g_{0}^{n} g\right)$

$$
\begin{aligned}
P==(\mathbb{R} \times G) / \mathbb{Z} & \longrightarrow \mathbb{R} / \mathbb{Z}=S^{1} \\
{[(x, g)] } & \longrightarrow[x]
\end{aligned}
$$

Intuitively

Denote this G-bundle / δ^{1} by $P_{g_{0}}$
Def: A bundle map, or morphiom of principal G bundles over X is a fiber- preserving G - equivarant map

$$
\begin{aligned}
& P_{1} \xrightarrow{\Psi} P_{2} \\
& \pi_{1} \xrightarrow{L} \pi_{\pi_{2}}
\end{aligned}
$$

One can show: of principal G-bundles
Every bundle map has an inverse bundle map so it defines an isomoph.

Exercise: Show that the bundle $\operatorname{map} \mathbb{R} \times G \xrightarrow{\psi_{n}} \mathbb{R}$ given by $\psi_{i}:(x, g) \longmapsto(x, \mathrm{hg})$ induces an isomorphism of bundles over the circle $\psi_{h}: P_{g_{0}} \approx P_{n_{0} d^{\prime}}$

- Iso. Classes of principal G-bundles over δ^{1} ave labelled by conj.
classes of elements of G.
- The automorphism group of P_{g} is

$$
Z(g)=\left\{h \in G \mid h g h^{-1}=g\right\}
$$

Fact, Let G be a finite group.
Isomaphion classes of principal G-bundles over a topological space X ore in L-1 correspondence with elements of

$$
\operatorname{Hom}\left(\pi_{1}\left(x, x_{0}\right), G\right) / G
$$

$\phi \sim \phi^{\prime}$ if $\exists g \quad \phi(\gamma)=g \phi^{\prime}(\gamma) g^{-1}$ for all $\gamma \in \pi_{1}\left(x, x_{0}\right)$
Note that setting $X=S^{1}$ we recover the claim that isom. Classes are in 1-1 correspondence with conjugacy classes of G.
9. Finite Group Gage Theory: Part 1
G-gauge theory for $n=1$

$$
\begin{aligned}
F\left(S^{1}\right) & =\text { sum over gauge bundles } \\
& =\sum_{g \in G} B\left(P_{g}\right)
\end{aligned}
$$

$B\left(P_{g}\right)=$ Boltzmann weight for P_{g}
This should only depend on the isomorphism class of $P g$ and hence should be a class function on G. So we write it as a sum over isom. classes.

Being a classfuration we can express the Boltzmann weight as

$$
B\left(P_{g}\right)=\frac{x_{\rho}(g)}{|Z(g)|}
$$

where X_{ρ} is the character for some element p in the representation r ing of $G . \Rightarrow$

$$
F\left(S^{\prime}\right)=\sum_{c . c} \frac{x_{p}(g)}{|z(g)|}
$$

Orthogonality relations \Rightarrow sum Projects to identity isotypical component of $\rho, w L O G$ Take $\chi_{\rho}(g)=1$
then $F\left(\delta^{1}\right)=\sum_{c . c .} \frac{1}{\left|Z_{(g)}\right|}$

$$
=\sum_{P_{g}} \frac{1}{|G|}=1
$$

So $F(p t)=\mathbb{C}$.
In general:

$$
\begin{aligned}
& F\left(N_{n-1}\right)=\text { Functions }\left[\left\{\begin{array}{c}
\text { iso classes } \\
\text { of } \\
P \rightarrow N_{n-1}
\end{array}\right\} \rightarrow \mathbb{C}\right) \\
& F\left(M_{n}\right)=\sum_{\begin{array}{c}
\uparrow \\
\text { closed } \\
\omega / o u t \text { dry }
\end{array}} \frac{1}{\left.\mid P \rightarrow M_{n}\right]}
\end{aligned}
$$

The discussion of amplitudes is best deterred to after we introduce $B G$ below For now we just note that:
for $n=2$ we have

$$
F\left(S^{1}\right)=\left\{\begin{array}{c}
\text { class functions } \\
\text { on } G
\end{array}\right\}
$$

Works out to give the conualution product:

$$
\left(\psi_{1} * \psi_{2}\right)(g)=\sum_{g_{1} g_{2}=g} \psi_{1}\left(g_{1}\right) \psi_{2}\left(g_{2}\right)
$$

Natural basis ore the characters χ_{μ} in the irreps $\mu \in \operatorname{Irrep}(G)$. Orthogonality relations for matrix elements of ines $\Longrightarrow \varepsilon_{\mu}=X_{\mu}(1) X_{\mu}$ is a basis of idemputents

$$
\theta(\psi)=\lambda \cdot \psi(1) \text { defines a }
$$

Frobenius structure and applying the above exercise:

$$
F\left(\sum_{g}\right)=\lambda^{2-2 g} \sum_{\substack{\hat{k} \operatorname{sep} s \mu \\ \text { of } G}}\left(\operatorname{dim} V_{\mu}\right)^{2-2 g}
$$

it can be shown that this is

$$
(\lambda|G|)^{2-2 g} \frac{\# \operatorname{Hom}\left(\pi_{1}\left(\sum_{g} x_{0}\right), G\right)}{) G!}
$$

So is indeed a sum of the Batman weight's $Y /|G|$ over isom. Classes of G-buralles, up to an "invertible TOFT". (to account for the $(\lambda(G))^{2-2 g}$ factor.)
10. Generalizations: Background Fields

In physics we generally need to endow our spacetines with geometric structures for example:

- orientation
- (spin stoutire
- Riemannian metric condor con fomalstuct.
- Principal G-bunalle wI connection.

In general these structures should satisfy some form of locality:

- They should pull back(or push-frowad) under diffeomorphisms
- They should satisfy a sheaf proportiy: If they are defined on open sets U and V and agree on $U \cap V$ Then there is a unique extension to Un.

For US, these are background fields The TFT functor gives the answer to the path integral: The dynamical fields have been integrated out

But the path integral will typically be an interesting function of The backgrounal feds.
E.g. Scalor field $\phi:\left(M_{n}, g_{\nu \nu}\right) \rightarrow \mathbb{R}$

$$
\begin{aligned}
Z\left[g_{\mu \nu}\right] & =\int d \phi e^{-\int \partial_{\mu} \phi d^{\mu} \phi v a l(g)} \\
& =\frac{1}{\sqrt{\operatorname{det}^{\prime} \Lambda}}
\end{aligned}
$$

is an interesting function of the metric.

Freed + Hopkins [1301.5959] formalize a notion of baclegriond fields as a "sheaf on Mann" a functor

$$
\tilde{\mathcal{F}} \cdot \text { Mann }_{n}^{o p} \longrightarrow \operatorname{Set}\left(\begin{array}{c}
\text { better } \\
\text { simplicial } \\
\text { sets }
\end{array}\right)
$$

We then put \mathcal{F}-structures on our bordisms to define on enhanceal Categing Bond $\left(\frac{1}{f}\right)$ and we can define a TFT with such background fields as

$$
\text { F: } \text { Bond }_{\langle n-1, n\rangle}(F) \rightarrow V_{E C T}
$$

Works well for discrete structures like orientation, principal G-bundles with finite G. Much more needs to be said if \mathcal{F} includes, say, Riemannicen metrics, conformal structures...

Interesting open problem: Formulate field Theories where \mathcal{F} includes foliations.
11. A Survey Of Some Famous Examples of TET's
One of the most famous examples is $3 d$ Chern-Simons theory. Perhaps The simplest example is constructed from a gauge theory with a U(1) gauge field, ie a connection on a principal U(I) bundle $P \longrightarrow M_{3}$, with M_{3} a 3 -dimensional oriented manifold. Locally the gauge field is desonbed by
a real 1-form A with globally-detiried fielobtrongth

$$
F \in \Omega^{2}\left(M_{3}\right) \text {. Locally } F=d A
$$

The exponentiated action in the pithintaral

$$
\exp \left(i \frac{k}{4 \pi} \int_{M_{3}} A d A\right)
$$

Where we have normalized A so that F has periods in $2 \pi \mathbb{Z}$. The action doesn't look gauge invariant, but under "small gauge tuns $\quad A \rightarrow A+d \epsilon$ $A d A \rightarrow A d A+d(\epsilon d A)$

So if M_{3} is compact w/out boundary $\quad \int_{M_{3}} A d A$ is gauge invonant. But under large gauge tins $A \rightarrow A+\omega$ w $\Omega_{\mathbb{Z}}^{1}$ itissalel quite well-defined. Betterum; One can prove that it is possible to extend $P \rightarrow M_{3}$ and its connection to $P_{\rightarrow} \rightarrow M_{4}$ with $\partial M_{4}=M_{3}$. Then The identity $F \wedge F=d(A d A)$ and Stoker' theorem motivates The hypothetical definition:

$$
\int_{M_{3}} A d A \stackrel{?}{=} \int_{M_{4}} F \wedge F
$$

Problem: The extension is not unique.

and in general $\quad \int_{M_{4}} F_{A F} \neq \int_{M_{4}^{\prime}} F_{1 F}$ What saves the day is that on the closed manifold $M_{4} \cup M_{4}^{\prime} \quad \int F A F \in(2 \pi)^{2} \mathbb{Z}$

$$
\therefore \quad \frac{1}{2 \pi} \int_{M_{4}} F \wedge F \in \mathbb{R} / 2 \pi \mathbb{Z}
$$

is well-detined
\therefore if k is an even integer $\exp \left(i \frac{k}{4 \pi} \int_{M_{4}} F \wedge F\right)$ is a
good action principle
(If we endow M_{3}, M_{4} with spin structures we can extend to K an odd integer. The inclusion of spin structures is a good example of the indusion of background nondynamical fields J.

Note that the pathintegral'meavn" $\exp \left(i \frac{k}{4 \pi} \int A d A\right)$
is metric independent. So we expect this to define a topalogical field theory. That is almost true but
in defining the path integral

$$
F\left(M_{3}\right)=\int_{A}[d A] e^{i \frac{k}{4 \pi} \int_{M_{3}} A d A}
$$

A / g
one must introduce a metric to define one loop determinants. One finds an overall dependence on the metric

$$
F\left(M_{3}\right)=e^{2 \pi i \frac{c}{24} \omega_{c s}(g)} \times \underbrace{\sim}_{\left.\begin{array}{c}
\text { metric } \\
\text { independent } \\
\text { ind }
\end{array}\right)}
$$

There are various approaches to deal with the metric anomaly.

1. Try to subtract off the gravitational chen- simonsterm as a "local counterterm." (Witter's paper on the Jones polynomial doesthis.)
2. Include background fields so The TFT is defined on the Correct bordism category Bond (F)
An example of an \mathcal{F} is a framing, but a cruder structure Known as a 2 -framing will suffice (see Attach's piper on TFT for a definition of 2 -framing.).

This basic example of $3 d U(1)$ Chen- Simons Theory can be generalized in several ways.
A.) Many $U(1)$ fields $A^{I} I=1,-, r$

$$
\text { Action }=\frac{1}{4 \pi} \int K_{I J} A^{ \pm} d A^{J}
$$

very useful in the QHE.
The matrix $K_{\text {IJ must be a symmetric }}$ integral matrix and it determines an integral lattice. The quantum amplitudes can be expressed in terms of invonints of this lattice.
B) Nonobelian gavage fields.

Now take a connection on a nonabelion principal G-bundle $\mathrm{P}^{\rightarrow} M_{3}$. for G a compact simple grays. Locally the connection is $d+A \quad A \in \Omega^{\prime}\left(u_{\alpha}, y\right)$ $y y=L_{i e}(G)$. We can from the Chern-Simons form
d $\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)=\operatorname{Tr}(F A F)$ and the Chern-Simonsaction

$$
\left.\frac{k}{4 \pi} \int_{M_{3}} \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)=\frac{k}{4 \pi} \int \operatorname{Tr} F_{\lambda} F\right)
$$

For a suitable notion of trace (egg. $T_{r}=T_{N}$ for $G=S U(N)$) K must be an integer, and Then (for M3 acpt w/out bdry)

$$
\begin{aligned}
& \exp \left(i \frac{k}{4 \pi} \int_{M_{3}} \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)\right) \\
& =\exp \left(i \frac{k}{4 \pi} \int_{M_{4}} \operatorname{Tr} F \wedge F\right)
\end{aligned}
$$

is well-defined.
Exercise: Compute the Change of $\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)$ under gauge tin

$$
d+A \rightarrow g^{-1}(d+A) g
$$

to see why the 3-form
Tr $\left(A d A+\frac{2}{3} A^{3}\right)$ is not globally well-defined on M_{3}.

One can define a nice Churn- Simone- Witter TET for any compact grove. In general It is determined simply by a choice of
G - compact Lie group
$K \in H^{4}(B G, \mathbb{Z})$ "level"
This topic continues to inflereace much current research

For more on $3 d$ Chern-Simons
Theory see my 2019 TASI lectures and the many references
Therein.
One can also extend Bd
CS theory to noncompact groups. Here the flavor is quite different and they ore typically not TFT'S. Fort example, state spaces are typically ∞ - dim$^{2} l$. For more about this very active research topic see:

1. Witter "Analytic Continuation of $C_{n e r n-S i n a m ~}^{\text {" }}$
2. Tudor Dimofte - review
3. Anderson t Kashaer-ICM Address
C.)

Chern-Simons theories
can be "upgraded" to higher-dineri: theories by using new exterior data: For example for a suitably normalized Closed $1-$ form we can contemplate a Hd thearylike

$$
\int \omega \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)
$$

One needs to be careful here to get a well-defined propagator. This kind of theory cuss studied by Loser, Moore, Neterasor, Shatashuili c. 1995 and further developed in Nikita Neterasor's PhD thesis.

More recently it has played a major robe in works by Kevin Costello and callaborators, especially in providing new insights into intloprable models. See, egg. The series of papers of Costello, Yamazaki; and Whiten.

A similar expression makes an appearance in an effective action for $4 d$ topological iasulaturswith nontrivial first Chern-clas of the band structure bundle. See G.M.ore, "A Comment on Berry Connections."
D. "BF Theories"

Another way to generalize to higher dimensions is to replace The closed 2-form F of Maxwell thary by an l-form

$$
\begin{gathered}
F \in \Omega^{l}\left(M_{n}\right) \\
d F=0 \Rightarrow F=d A
\end{gathered}
$$

A: locally defined ($\ell-1$)-for If we have A, A^{\prime} then

$$
\exp \left(i k \int_{M_{n}} A d A^{\prime}\right)
$$

Makes sense so long as

$$
l+\ell^{\prime}=n+1
$$

A good way to think about These actions makes use of differential cohomalagy - discussed later.

Nonexamples:
A. 2D Yang-mills

$$
\begin{aligned}
& \text { Action }=\int \operatorname{tr}(\phi F)+\mu \operatorname{tr}\left(\phi^{2}\right) \\
& F\left(\sum_{g,} A\right)=\sum_{R \text { :imep }}(\operatorname{dimR})^{2-2 g} e^{-4 C_{2}(R)}
\end{aligned}
$$

does not have good $A \rightarrow 0$ for $g=0$
B. Donaldson-Witten, Vata-Witten, Kapustin-Witten, Rozansky - Witten, Oromov-Witten, x-Floer, y-Floen z-Fher
Q - closed sector $\omega / Q^{2}=0$
Vory different feeling
Typically Only partially detineal

